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Abstract We discuss classroom activity comprising of small groups of students 

collaboratively tinkering with programs of dynamically manipulable figural 

models posing problems regarding their mathematical properties and behaviors. 

We analyzed data from students’ discourse taken from two classroom 

interventions employing a framework of creative mathematical action-in-context 

in order to study student-generated ideas. We approached students' actions taking 

a fallible mathematics epistemological approach and employed constructionist and 

social creativity theory in our analysis. Our results show that student agency in the 

disciplined field of mathematical thinking need not curtail the potential for 

undisciplined creative action, on the contrary given appropriate tools and 

discursive environments it may in fact create space for actions with creative 

potential for students. Out of their own accord, the students in the study used 

generalized number theory to resolve engineering a parallelogram which can 

never be a rectangle and used recursion to program a model embedding 

geometrical progression to create a spiral based on the golden ratio.  

Keywords creative mathematical actions, programming, mathematics, 

constructionism, social creativity 

Introduction 

This paper investigates student-generated creative actions in a classroom context 

where the teacher and the use of a particular digital medium for mathematical 

expression where meant to inject a fallibilist style of mathematical activity (Davis 

& Hersch, 1980) in an otherwise formalist mathematics type of schooling. In our 

theoretical frame section we firstly explain why we give central importance to 

mathematical epistemology in order to study the creative actions of learners. We 

then discuss the study of creativity within a framework recently suggested by 

Riling (2020) focusing on creative mathematical actions-in-context, actions with 

creative potential emerging within the community of a school classroom. We thus 
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explain the kinds of activity emerging in our classroom contexts which are based 

on the use of a particular programmable digital medium for expressing 

mathematical reasoning through the modeling of animated figures. To discuss 

creative actions in a social discursive classroom setting we then elaborate on what 

we mean by a socio-technical environment, a community jointly working with a 

digital medium. Recognizing that, from a research point of view it is much more 

complex, we nevertheless felt it necessary to jointly employ these diverse 

theoretical constructs if we really wanted to gain insight into creativity in a 

classroom community as action-in-context.   

So, in designing our classroom pedagogical intervention to enrich opportunity for 

creative actions, we adopted Riling's approach (2020) who suggests that it is hard 

to look for creativity in formalist mathematical contexts since creativity emerges 

from agency, the capacity to act independently. The kind of disciplined agency 

inherent in formalist mathematics restricts rather than enriches the potential for 

creative actions assigning importance to reason rather than insight. Riling (2020) 

goes as far as to suggest that even in the case of problem posing, creativity has 

been mainly studied in the context of given tasks to pose problems, timed 

activities, responses to teacher-originated challenges where the teacher, the 

discipline and the institution are primary authority systems. In this research we 

wanted to identify instances of learner creative action in a transformative 

educational paradigm where mathematics is seen as created by humans and 

characterized by combining and selecting ideas and concepts not usually 

connected with the problem at hand and by making decisions on which problems 

to pose and attempt to resolve.  

Rather than addressing a particular level of creativity, such as for instance the 

inherent in all of us everyday 'little-C' (as proposed by Kaufmann and Beghetto, 

2009 and Craft et al, 2013), we attempted to identify and describe creative actions 

in their transaction with a particular disciplined mathematical context 

pedagogically engineered to allow for undisciplined agency. We wanted to 

contribute to addressing the problem of how to look for and how to encourage 

undisciplined agency within the disciplined context of mathematical reasoning. To 

do that, we took a fallibilist view of mathematical activity and focused on the 

interactions between students, their teacher and the digital tools used as expressive 
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media for engineering mathematical models. We wanted to consider what kind of 

mathematical context would allow and encourage undisciplined mathematical 

activity.  

Framing the study  

In the past 30 years or so attempts to understand, discuss and cultivate creativity 

in mathematics education have, albeit sometimes implicitly, taken a diversity of 

approaches with respect to what it means to know and do mathematics, to the 

nature of mathematical creativity and to the focus of attention alternating amongst 

person, process and product (Liljedahl & Sriraman, 2006).  

Much of this work began and continues to look for students with the potential for 

the kind of high-impact domain-disrupting creativity expected from 

mathematicians' thus connecting creativity to ability and giftedness with respect to 

the education sector. More recently however, researchers have in parallel been 

looking to identify, characterize and cultivate creativity as inherent in all learners 

of mathematics, including youngsters. Original work by Craft (2001) suggested 

that beyond high-impact 'big-c' creativity it is worthwhile addressing 'little - c', a 

type of creativity in all of us manifested in everyday kind of situations and that it 

is thus valuable to look at that type of creativity in domain teaching in school. 

Kaufmann and Beghetto (2009), built on this idea for mathematics education and 

suggested that it is useful to go even further and think of mini-c, a type of 

creativity inherent in the generation of mathematical meaning. Pitta et al (this 

issue) suggest that from a pedagogical point of view it is worth finding ways to 

cultivate mini-c in mathematics classrooms on the way to infusing mathematical 

thinking in everyday little-c. However, the research has hitherto largely assumed 

mathematical activity as taking place in formalist mathematical schooling and has 

studied timed student responses to given tasks and problem solving and posing  

activities in context of discipline, teacher and institutional authority (Boaler, 2003, 

Riling, 2020).  

Furthermore, the focus so far has overbearingly been on person, process or 

product, predominantly on the creativity of an individual even when individuals 

have been involved in collaborative or interactive classroom situations. In effect, 
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researchers have looked to identify in learners the kind of creativity-as-talent 

originally associated with mathematicians, for instance the four-level preparation, 

incubation, illumination, verification process (Milos, 2016). There has been very 

little work focusing on creativity in connection with mathematical epistemology 

and thus creativity as mathematical action embedded in learner transaction in a 

community such as for instance within a classroom context. This research 

attempts to provide some insight into social student - led creativity in an informal 

mathematical classroom context. We thus framed the research by connecting 

diverse but in our view necessary perspectives of mathematical epistemology, 

creativity as action-in-context, the affordances of a specific context based on 

mathematical activity through programming and on social creativity in  this 

particular type of context.  

Creativity and fallible mathematics  

In the mathematics education community mathematical creativity has mainly been 

addressed in two ways, by means of the 'genius' approach connecting creativity to 

giftedness (Mann, 2006, Sriraman, 2005, Leikin, 2013) and by means of the 

problem solving-posing approach (Silver, 1997) extending the search for 

creativity in both closed and open mathematical problems. Although never 

explicitly discussed so far, we would suggest that, from a fallibilist perspective at 

least, both approaches veer towards a Platonist view of mathematical activity 

(Sriraman, 2004) assuming that mathematics is out there to be discovered by the 

mathematician and by association, by the learner.  

According to Riling, 'the fallibilist perspective has two main distinctions from 

formalism that have implications for the role of creativity in mathematics 

education. First, fallibilism positions mathematics as a totally human invention, 

which means that it provides a coherent rationale for creativity being a part of 

mathematics education. Second, fallibilist creativity does not rely on the existence 

of an unknowable and uncontrollable mathematical intuition that some students 

may lack, which means that the fallibilist perspective does not position any 

students as incapable of mathematical creativity' (Riling, 2020, p.14). 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



5 

In the setting we studied, students were encouraged to pose problems as they 

emerged during discursive activity characterized by engineering artifacts in the 

form of programmable dynamic figural models, tinkering with the models' 

properties and behaviors, sharing them and discussing over them while doing so. 

The pedagogical motivation for generating such contexts was to free up and 

cultivate the kind of creativity which grows with mathematical meaning-making 

taking some distance from taken-as-established mathematics and traditional 

curriculum structures.  

To address such situations, we perceived doing mathematics to densely involve a 

learner exposing meanings and articulations of logical thought and justifications 

to criticism and refutation attempts rather than exposing statements of positivist 

truths. We argue that epistemology matters in the study of mathematical creativity 

and that fallibilism (Davis & Hersch, 1980) embodies an epistemology which is 

pedagogically promising for the cultivation of creativity emerging from learner 

agency, i.e. from the students' own undisciplined decisions while engaged in a 

disciplined structured activity in a mathematical classroom context (Grootenboer 

& Jorgensen , 2009).    

In order to identify creative mathematical actions in this particular context 

involving the programmable digital medium, we needed to adopt the well-

recognized meaning-making approach to mathematical learning and a 

constructionist approach to doing mathematics (Noss and Hoyles, 1996). Papert 

(1972) provocatively argued that mathematical meaning-making is natural to 

learners. It is traditional schooling that somehow imposes an artificial picture of 

mathematics to be the practice of trying to understand the abstract products of 

mathematical activity rather than the activity itself. These products are in fact 

irrelevant to the meaning-making process of students (Kynigos, 2015).  The 

imposition of this kind of mathematical learning denies students the opportunity 

and encouragement to engage in the 'logic which gives birth to concepts' 

(Lakatos, 1976). 

Lakatos (1976) was equally provoking in his book ‘proofs and refutations’ where 

he analyzed mathematicians’ activity as a process of conjecture, as a public 

expression of thought and subsequent engagement with a cycle of refutation, 
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redrafting and new proofs. Sriraman (2004) discusses Davis and Hersch's (1980) 

distinction of three approaches to mathematical activity, Platonism, Logicism and 

Formalism. He draws attention to a fourth school of thought, constructivism, 

(Ernest, 1991 in Sriraman, 2004), in the search for a 'mode of thinking or inquiry 

which leads to meaningful questions and to the methodology of tackling such 

questions' (p.21). He stresses that such mode of thinking is highly determined by 

culture i.e., within social interaction. 

Creativity as action in context 

Our aim in this study was to contribute to an understanding of creativity as 

meaning-making in a socio-constructionist context characterized by an 

engineering kind of mathematical activity, i.e. where collaborating groups co-

construct and tinker with dynamic digital artifacts by means of programming and 

discuss their mathematical properties and behaviors in the process (Papert, 1980, 

Kynigos 2015). 

The fallibilist approach to mathematics perceives that, rather than discovered, 

mathematics is created by humans. Riling suggests that in this context, rather than 

focusing on the level of creativity, it is meaningful to focus on human activity, to 

think of a creative mathematical action and to position such action in a 

community. She suggested that it is useful to look for mathematical action with 

creative potential in interaction with a context within a community (Riling, 2020, 

Craft et al 2013).  

Riling defines a creative mathematical action as 'one that transitions a given 

mathematical context into a new version of mathematics by creating ways of 

doing or thinking about mathematics that were previously not possible for a 

particular community of mathematicians', Riling, 2020, p.17 

In education, actions with creative mathematical potential are mostly those which 

learners engage in on their own accord, their own agency (Wagner, 2007). Within 

such a fame, for example, creative actions are those of combining concepts and 

ideas to resolve a problem which are usually not considered as connected or to 

select an unusual concept or argument to resolve a problem. Riling points out that 

creativity in a person can be thought of the frequency of taking creative actions 
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but points out the importance of circumstance. Skovsmose in fact talks about 

learner intentions grounded in a disposition to take agency (Skovsmose, 2001). 

Acting on one's own accord has been juxtaposed to authority by researchers such 

as Anderson and Noren (2011) and Boaler (2003), the latter elaborating on 

Pickering's notion of 'dance of agency' in order to discuss discourse and 

interactions between learners and teachers within institutions as authority systems 

including mathematics as a domain. Agency in formalist mathematical activity is 

highly disciplined and researchers have maintained that it may well inhibit the 

emergence of creative ideas and solutions to mathematical problems.  

Agency is not only the capacity to act independently but also an intention 

grounded in disposition as Anderson and Noren (2011) point out in their analysis 

of Skovsmose's (2005) take on agency. They point out that Skovsmose perceives 

of learners as acting and reflecting subjects in a mathematical classroom and that 

certain forms of communication may enhance space for agency. Anderson and 

Noren synthesize Skovsmose's elaboration of agency in mathematical learners 

with Biesta & Tedder, 2006, who refer to learners as actors in transaction with 

context.  

In our study we explicitly looked for student agency, i.e. learners' dynamic 

competence to act independently and make action choices as Anderson & Noren 

would put it (2011).  We adopted Anderson's & Noren's view of agency that is not 

just individual, but exercised within social practices and perceived of agency as 

tightly connected to context noting their quoting of Holland, Lachicotte, Skinner, 

& Cain (2003) “Agency lies in the improvisations that people create in response 

to particular situations” (p. 279). We thus needed to adopt a social-relational 

approach (Glăvenau, 2015) affording creativity a dynamic emergent essence 

within cultural settings in the context of social interaction (Craft and Jeffrey, 

2008, Riling, 2020). But first a few words about the affordances of the particular 

context where creativity was sought in this study.  

Engineering through programming mathematical models 

Learning through tinkering models is based on Constructionist theory (Papert & 

Harel, 1991), a special kind of fallibilist mathematical activity which argues that 

learning occurs naturally when students take agency while making and sharing 
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tangible artefacts (Gauntlett et at., 2009). Constructionism comprises a strong 

educational design element (Kynigos, 2015), where powerful mathematical ideas 

are embedded by pedagogical designers in special kinds of artifacts accompanied 

by construction units and tools, even a construction language in some cases of 

digital media. Such construction kits are thus designed to provide dense 

opportunity for students to concretize and express their ideas by designing 

themselves, building and engineering (Healy and Kynigos, 2010). Thus, in digital 

constructionist learning environments learners' agency is encouraged since they 

become designers using technology to build and modify artifacts which become 

public entities when shared with peers, while teachers act as facilitators of the 

process (Blikstein, 2013). This constructionist view highlights the importance of 

social participation in the learning process, as well as the emergent productions 

with usually low social impact range (Papert, 1980). 

This leads us to revisit the notion of the ‘creative product’. Girvan (2014) 

mobilizes Vernon's (1989) definition of creativity to suggest that an artifact is 

necessarily created and then shared with others as 'a person’s capacity to produce 

new or original ideas, insights, restructurings, inventions, or artistic objects, which 

are accepted by experts as being of scientific, aesthetic, social, or technological 

value' (p.94). A creative product is often described as creative in terms of novelty 

and appropriateness (Amabile, 1983), however, novelty can be in terms of both 

historical novelty, in that it has never been thought of by anyone ever before, or 

psychological novelty, an idea which is novel to the individual (Boden, 2004) or 

to the immediate social environment. However, it can be argued that novelty is not 

creativity, without appropriateness to the problem to be solved. These concepts of 

novelty and appropriateness can also be applied to the evaluation of the ideas 

phase in the creative process model. 

Social Creativity 

So, how could we account for creative mathematical action in a classroom 

social setting based on fallible constructionist mathematics with a programmable 

dynamic modeling medium? Fischer’s (2004) approach of ‘Social Creativity’ is a 

theoretical framework for understanding creativity in collectives as an effect of 

the interaction among the members of a group, between them and the media they 
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use (mostly digital) and the artefacts that they create. In this approach, the 

emergence of creativity springs as a shared expression of a group of people 

engaged in the joint enterprise of constructing or modifying a digital artifact or 

tool, rather than as a sum of individual creative actions. According to Fischer et 

al. (2005) the nature of creativity, in a broader sense, has four components; 

originality, expression, social evaluation and social appreciation. While originality 

is a common component in other approaches of creativity, the other three 

components centrally take into account the communication and the interaction 

within the group something which was crucial to understand in our study. 

Glăvenau (2015) argues for the value of social/relational theories of creativity 

appreciating the importance of interdependent but diverse perspectives of process 

and product. He stresses the temporal aspect and the dynamic view of creative 

potential 'creative ideation and achievement are continuous with each other, what 

people think about and do at time x opens up a new sphere of potential 

achievements at time x+1' (p. 115). Social Creativity as a theoretical framework 

has not been widely used in educational settings, but it is related to our broader 

research questions for a clearer view of students’ group discourse while they were 

engaged in their model tinkering activities. The role of participants, as it is 

described by Fischer (2002) in situations where Social Creativity emerges was 

another reason to think of it as a legitimate framework for implementing our 

intervention; our students did not just use the digital media, but they contributed 

by modifying and redesigning them in a way that had a negotiated personal 

meaning for them.  

So, in this study, we found it imperative to try to integrate these otherwise diverse 

frame in order to ask and throw some light on the following questions: what kind 

of disciplined mathematical classroom context may allow for undisciplined 

agency to become legitimate? what kind of context affordances generate dense 

opportunity for discursive creative mathematical action?  

3 The design of the Research 

This research used data from two diverse real classroom situations in one of the 

experimental schools in Greece. These are 62 schools with some special features 
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such as the right for teachers to make some minor modifications to the ways the 

curriculum is taught or to suggest some extra activities for the students after 

agreement by the school board which is headed by a university pedagogy 

professor.  

The digital medium which was used for mathematical modeling was a well-

established, freely available on-line programming tool recognized by the Ministry 

of Education. In Greece, the on-line mathematics curriculum books are replete 

with links to 'micro-experiments' a significant number of which set the students 

the task to fix a buggy program so that it generates a generalized geometrical 

object such as a parallelogram or an isosceles triangle containing the respective 

properties by means of variable values and inter-variable functional relationships 

(Kynigos, 2020). Out of the 1600 - odd micro-experiments residing in the on-line 

mathematics curriculum books from year 3 to 11, 220 were created with this tool, 

called 'MaLT2'. MaLT2 embeds a Logo programming language to create 3D 

figural models affording dynamic manipulation of variable procedure values 

(http://etl.ppp.uoa.gr/malt2/). This last feature creates a sense of dynamic 

'behavior' of a figural model when it is constructed by a parametric procedure. 

Mathematical formalism in the form of a programming language, figural 

representations and dynamic manipulation of generalized values are interlinked 

representations.  

The first class we collected data from was a normal classroom of Grade-7. 26 

students who got involved in an investigation with MaLT2 during their lessons. 

They had had experience with this already since their normal teacher had 

integrated some on-line MaLT2 tasks in the mathematics course. In our research 

school, typically, students worked in pairs trying to de-bug a given artefact and 

then used the bug-free model resulting from their work as an object with which to 

create something of their own. The students had the opportunity to communicate 

with their collaborating peer, and also discuss an idea at whole classroom level. 

This discussion took place when students wanted to make a suggestion on the 

task, or when the teacher though that it would be good to bring an idea of a pair of 

students to a whole class discussion.  
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Our second classroom case was within the Mathematics Club of the school. 

Students opted to join the club out of their own interest but perhaps also 

influenced by the value their parents attributed to Mathematics. In this school, 

students started being members of the Club in Grade-8 and could stay as members 

to the end of high-school (5 years). Club activities included solving problems and 

riddles and involved investigations in groups. 15 students from different years 

attended the club that year. The tasks and challenges that were addressed to them 

were chosen so that all of the students could get involved into investigation 

regardless of their Grade. In this case we focused on three Grade-11 students that 

were club members since their Grade-8. They were high achievers in 

Mathematics. As researchers, in both cases we wanted to keep an open mind on 

the type of meanings were related to mathematical concepts and logical thinking 

processes (Warr and O'Neil, 2005).   

Although these situations took place in a real school setting, (researcher and 

researcher-teacher) had to intervene by designing and putting to action a specific 

learning environment, since tinkering digital artifacts by means of programming is 

not a common practice in schools. We saw our intervention as a cycle of design 

experiments informed by the results and experience from our previous studies, in 

terms of the Design-Based Research (DBR) framework (Bakker, 2018).  

For the first class case, based on experience from previous cycles of our 

research on meaning-making (Diamantidis et al., 2019; Papadopoulos et al., 2016) 

we adopted our pedagogical technique of starting the students off by giving them 

what we call half-baked digital models and asking them to identify and fix the 

bugs we intentionally placed within (Kynigos, 2007). This was a permutation of 

the buggy procedures given in a micro-experiment in the curriculum book in that 

we were the ones choosing what bug to insert. We use the term half-baked models 

to describe digital artifacts which we intentionally design to be incomplete or 

faulty and we call this a kind of didactical engineering. At the beginning of an 

activity we typically challenge students to explore the reason for their buggy 

behavior. So, students are consciously engaged in trying to identify bugs, fix them 

and subsequently create their own model configurations using the fixed model as 

a construction unit. This latter part of the activity is loosely if at all structured by 

the teacher allowing for students to pose problems and make choices of what 
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model structures to build with their fixed models. The idea is to design situations 

where half-baked models operate as a spark for creative mathematical-engineering 

ideas to emerge. In our previous research cases, the lens of analysis was mostly 

focused on the meaning-making process and on the discourse among students and 

teachers who participated in these studies. Here we addressed creativity in such a 

context. For the second class, the mathematics club we employed a different 

design for the activity by giving the students a working model and asking them to 

use the same programming technique to create a model of their own.  

Besides the didactical engineering of group bug-fixing and model 

generation activity, we paid attention to the ecology in which the research took 

take place. What kind of classroom setting would be suitable to facilitate a 

creative process? Is there a specific learning ecology in which creativity could 

emerge spontaneously?  So, apart from adopting the constructionist idea that 

learners act as designers, we employed a ‘Social Creativity’ perspective as a 

methodological basis for our study in order to come to grips with the ecology of 

our intervention.  

4 Method 

  

We analyzed the student-student and student-teacher interactions during the 

process of bug-fixing and model modification. In both cases the data we analyzed 

were produced during the research and consisted of voice recorded conversations 

among students and students and teachers, their actions on the computer screen 

that were captured with the use of a screen video recording application, all the 

digital artifacts that students produced and the researcher’s field notes. The 

teacher that participated in the study was a members of the research team and kept 

notes from the field.  

We analyzed the data following a grounded approach. We analyzed students 

dialogs and put their expressions in categories looking especially for instances 

where they demonstrated agency, making their own decision on how to proceed. 

So we encountered initiatives and suggestions on the selection of mathematical 

context to be used, on different views around the correct answer to the task, on 
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unusual combining of mathematical concepts with regards to school mathematics, 

on making trials of new ideas in a construction. In both classroom cases, there 

were other ideas and incidents from other groups of the classroom and the 

mathematics club respectively that had these characteristics. However, the two 

episodes that we chose to elaborate on in this paper were the most indicative; 

students’ agendas in both cases were significantly different from the initial task 

given to them and led to a product.  

We addressed this learning environment as a meta-design situation, i.e. where 

participants study the ways in which given artifacts have been designed by others 

and engage in re-designing them to fix bugs or make changes in their behaviors. 

We were looking for creative actions in the process and the outcomes of this kind 

of environment assuming that the original half-baked artifacts would play the role 

of an organizer of the activity, a sparker for actions with creative potential 

(Fischer & Giaccardi, 2006). We took meta-design to mean that the participants 

should consider modification of given artifacts to be within normal classroom 

activity and not part of some laboratory situation. 

We analyzed student discourse, dynamic manipulation and programming 

not only with respect to the bug-fixing process during the phase of solving 'the 

task' but also what they came up with doing with their programs after fixing them. 

We were equally interested in the ‘outcome phase’, and the ‘process phase’, 

studying meta-design and the discourse around it in an educational context, as an 

interaction that underpins creative thinking. We approached the students acting as 

designers and engineers, taking both as characteristics of creative engagement to 

tasks (Howard et al., 2008) through the posing and refining of questions before, 

during and after they address them.  

What kind of creative mathematical actions can be identified in engineering 

through collaborative programming discursive situations? What kind of 

mathematical concepts may emerge and how would it be valuable to think of their 

impact range? What role do these kind of digital representations play in the 

emergence of creativity in such discursive environments? how can this kind of 

creativity cultivate mathematical meaning-making?  
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5 Results 

Constructing a Parallelogram which can never be a rectangle. 

We observed eight Grade-7 successive lessons of a regular class comprising of 26 

students working in pairs each sharing a computer. In this section we focus on the 

communication and interaction between the students of a group, that took place 

during the third lesson. The task they were set was taken from the digital version 

of their curriculum book and came in the form of a link to the following specific 

MaLT2 'micro-experiment' (Kynigos, 2020). Pressing the link opened up a live 

MaLT2 file comprising the code of a defined procedure and an executed instance 

of the procedure with six consecutive values of 80 130 80 130 150 30 (see fig. 1). 

The procedure code was:  

to parallelogram :a :b :c :d :f :w 

 fd :a rt :f  

 fd :b rt :w 

 fd :c rt :f 

 fd :d rt :w 

end 

The code commands an avatar (in the form of a bird) to alternate between 

displacement (fd) and turn (rt), each displacement leaving a linear trace. The value 

of each displacement and turn is however expressed in the form of a variable (e.g. 

:a = variable 'a'). If the task is to create a parallelogram procedure, the given 

procedure is buggy since a) there is no functional relationship between 

displacements when they should be alternately equal b) turns are alternately equal 

but there is no relationship between consecutive turns which should be 

complementary (see fig. 2). However, the values given to the students in its 

execution create an instance of a parallelogram since they are instances of the 

required relations. The task text asks whether the procedure always creates a 

parallelogram and if not, can they fix it to do so?   

The intent of the exercise is for the students to manipulate the variable values in 

the sliders shown in fig. 1, realize that changing values results in animations 
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breaking down the parallelogram figure and thus identify that the original figure 

was only an instance of what the given procedure can generate. The students can 

then look back into the code to search for ways to express functional relations 

between alternate segments and subsequent turns so they can create a procedure 

for a generalized parallelogram. The code in that case would be a formal 

description of the properties of the figure necessary for the bird to construct it, 

hence the engineering perspective of the properties and their implementation.  

 

 

Figure 1: A parallelogram instance of a buggy procedure  

 

 

Figure 2: A random instance of the buggy procedure  
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The question posed to the students by text attached to the medium was 

‘Can you fix the program to always make a parallelogram?’ We pick up the 

group's activity after two sessions when they had already found the 'solution' by 

looking into their textbooks and also talking to their peers. Their solution was to 

apply the same variable for alternative displacements (:a for first and third, :b for 

second and fourth), and one variable for the first turn (:f) followed by a linear 

relationship of 180-:f for the next and so on (fig.3). So far so good, we could 

characterize the activity as taking place in a mathematically disciplined 

engineering environment and the kinds of creative actions coming from the 

students as characterized by disciplined agency, solving a set task.  

However, these students had second thoughts about having solved the task. 

They started discussing what exactly was the aim of the task, with regards to the 

question posed. We have enriched the original dialogs with some comments in 

italics, to articulate the situation. 

1 S1: Ok, this is a closed one [figure], but it is not always a parallelogram. 

2 S2: I have seen that J and M [they were two peers from another group] 

have made a similar shape. It seems to be ok! 

3 S1: But if I move this slider to 90 [the slider of variable :f] this is a 

rectangle [fig. 3]. the task says 'always create a parallelogram'. Is it ok if 

it's a rectangle or not? Is it what the questions asks from us to do?  

4 S2: I don’ t know, should we ask J and M? But, wait, what is wrong if the 

shape was a rectangle, for a set of values? 

5 S1: We ‘d better ask teacher. 
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Figure 3: The program/solution that students reached to. S1 manipulated dynamically the shape 

arguing that it could be a rectangle. 

It is always surprising to the educator how resistant the students were to 

accept that it is ok for a parallelogram to be a rectangle, one does not cancel out 

the other, in fact the latter necessarily has the propertied of the former. In their 

curriculum book however, these two figures appear in distinct sections with 

distinct naming and properties. So, even though the generalized expression they 

had just built obviously created either figure they actually felt that they needed to 

literally meet the task - to create the former only and not the latter. Since no 

mention was explicitly made about a rectangle then the procedure ought to not 

create such a figure. Even though the students seemed to understand class 

inclusion in this case they did not seem to accept it since two distinct names had 

been given to sub-class and class. The dilemma was expressed situated in S1’s 

words (line 3). The next extract shows how the students became more articulate 

about perceiving this as a problem.   

6 S1: We have a problem here. We have made this parallelogram program, 

however, it makes a rectangle for :f equals 90. 

7 T1: Is it a problem? Why? 

8 S1: Because it asks for a parallelogram, not a rectangle!  

9 S2: Yes, this is a special case! Rectangle is a special case.  

10 T1: So, I see you do not need a special case. Can you just ignore it? 

11 S2: I do not know. If that were the case, it would have asked of a 

rectangle, as well. 
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While in line 9, it seems that S2 did think of a rectangle as a special case of 

parallelogram she wasn't satisfied with the inclusion as shown in line 11; the 

inclusion property seemed to blur when it came into use. The task did not 

specifically ask for 'a parallelogram or a rectangle', therefore the students assumed 

that the latter was not wanted. So, what we could say is that we had a situation 

that provoked meaning generation around parallelograms, their classes, and their 

properties. Now, the teacher's reaction is key here. In line 10, he seemed to join in, 

legitimize the students' posing of a problem. In a formalist approach he would 

have just told them about class inclusion and that they did not need to bother any 

further. Here though, he engaged in their quest as if he was part of the group.  

 So, the students actually set themselves the task to create a generalized 

parallelogram procedure excluding the case of rectangle. At first they fixed the 

slider range to end up in 89, so that dragging the turn slider would not get to 90. 

Their teacher refuted that as a solution by simply changing the range of the slider, 

showing that it was not a generalized solution. In the dialog which follows we can 

see a progressive articulation of the student-posed problem. The teachers' 

refutation provoked a more sophisticated articulation of the problem by the 

students who had got excited by the ownership - the agency - of this new task they 

had set themselves. They accepted that manipulating the slide-range was not 

legitimate, the solution has to be found in changes to the code so that a rectangle 

would be impossible whatever the value of the variables.  

20 S1: Ok, lets see the variable of turning right, what we called it? 

21 S2: It is :f.  

22 S1: Oh yes, :f! The variable we already limited between 0 and 89. What 

can we do to avoid being equal to 90? Is there any way to set a limit with a 

command into the program? [S1asks the teacher]. Something like :f<90. 

23 T1: No, you cannot do this. You should think of another way. What you 

can do is to use variable :f in a different way in the program. 

24 S2: Which means? 

25 S1: Perhaps we could use a condition, say if :f=90, then to turn right :f-1, 

e.g., 89. 

26 S2: Or to turn right :f+1, e.g., 91.. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



19 

The engineering aspect of the activity led students to try to forge links between a 

geometrical property and the idea of a generalized number which however could 

not take one specific value. This could be characterized as a selecting a 

mathematical idea which would be unusual to associate with parallelogram 

geometrical properties. Conditionals were not on the menu since the students had 

not been show how to use them in the programming language. When they came 

back to the next section, after apparently having spent time thinking about this and 

discussing it, S1 and S2 presented a new version of their program in which they 

used the commands ‘right 2*:f+1’ and ‘right 180-(2*:f+1)’ for the successive 

turnings. So, their solution to a generalized number excluding the value of 90 was 

a generalized expression of odd numbers, thus barring all even numbers including 

90. They themselves explained, that turning was of odd degrees, which prevented 

the program from producing a rectangle under any kind of dynamic manipulation, 

while still producing a lot of parallelograms. So, we don't want the value of 90? 

exclude all even numbers and we're there! It is obvious that the understanding of 

class inclusion for these students was not deep enough to be sufficient to solve the 

set task. In a formalist mathematical environment this would have been explained 

and the students would have seen it easily. However, what was important here for 

the teacher and what was facilitated by the digital tool and the classroom norm, 

was the fallibilist approach to mathematical activity. It did not matter so much 

what triggered this problem posed by the students. What mattered was that they 

made a decision to pursue it, that it was not set by the teacher or the task and that 

what resulted was a mathematical process of propositions and refutations and a 

creative selection of an unusual idea to resolve it. In a formalist environment the 

students would not have had the space to engage in such an activity and if they did 

it would most likely have been unnoticed by teacher and researchers in this case.  

 

The case of the Quadrant Spiral  

In this case, we focused on a group of three Grade-11 students (S3, S4 and S5) 

working on MaLT2, during their after-class Mathematics’ school club. They were 

experienced users of MaLT2, as they had started making programs on it three 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



20 

years prior to the study. Since then, they had been involved in activities with 

MaLT2, at least twice a year during the Mathematics’ club session.  

The sessions of the club took place in the school lab, where each group of 

students was working on a computer. The tasks were designed by the teacher (T2) 

who was responsible for running the club, adopting the role of a facilitator of 

students’ activity during the sessions. The sparker for the incident that we are 

describing here was a program that used recursion. This program (fig. 4) was 

given to all the students, by the teacher, along with the task to make a shape of 

their own preference using it (fig. 4). When executed, the code creates a 

rectangular spiral since in each recurrence the displacement is 5 units less than the 

previous one. Execution with a value of 130 results in a spiral of 24 segments. 

The students of the focus group began to investigate the structure of recursion. 

The task directly gave agency over to them since they were challenged to create 

something of their choice using recursion. The discipline here however was to 

first figure out how recursion works.   

 

Figure 4: The program using recursion which was given as a sparker to the students. 

1 S3: Is it possible that a program calls itself? I am talking about ‘rec’ which 

uses ‘rec :x-5’. 

2 T2: explains how the program runs in a formalist way, but stops there  

3 S4: Got it! It is like repetition, but not exactly like repetition. 

4 S3: Why not? 

5 S5: Because there is not a fixed time of repetitions. 
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6 S3: But it is! Since you run the program ‘rec 130’ you know that it is going 

to be repeated 24 times. 

7 S4: It is more than that, since every time it is repeated, the value of :x is 

not the same. So, it is not a real repetition. 

In the extract above, students argued on the way the recursion occurs, using 

examples that referred to the program given by T2. They tried to establish a 

common way of understanding recursion, thus a shared meaning of what it really 

is. The key element that they had tracked down around recursion was that in every 

nested execution of rec, the argument of rec is not the same. This was crucial to 

move to the next step. 

8 S4: This was the problem we had in the past when we tried to make the 

spiral, remember? 

9 S3: Yes, we had to repeat the same pattern of commands many times in the 

program, just because of that problem we faced around repetition. 

10 S5: Which one? 

11 S3: We wanted the radius of the arc to be different, in each repetition! We 

could not construct a program like this with a usual repeat command. 

12 S5: Maybe we can try to use this type of repetition here, which is not a real 

repetition, off course!  

13 S4: Yes, but it will save us! We can make the program without having to 

use a fixed number of repetitions, which was very restrictive! 

14 S5: You talk about the number of repetitions, uh?  

15 S4: Yes, about the spiral’s length. 

In this extract, students recalled a problem they themselves had posed one month 

ago (lines 8 and 9) but had failed to solve; they were trying to make a spiral made 

of quarter circles, like an image they had seen in a poster (fig. 5). In that image, 

the spiral’s quarter circles were drawn inside squares. The side of each square 

represented the radius of each quarter circle. As mathematicians we know that the 

spiral was related to a geometric series of the ‘golden ratio’ known as ‘Phi’. So, if 

the radius of the first quarter circle was equal to :r, then the next one should have 

radius equal to :r*(1+√5)/2. Students, probably driven from the image, wrote a 

program with a non-intrinsic approach of the arc’s construction, relying on the 
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radius; they used ‘repeat 9 [forward (2*pi*:r)/36 right 10]’. Up next, they wanted 

to repeat the same pattern of commands, but with radius equal to :r*(1+√5)/2, and 

so on. This was a barrier to their efforts since they could not use the repeat 

command to make the spiral, as mentioned by S3 in line 11. To overcome this 

barrier, they simply iterated the commands with a different input each time 

respectively. This is probably what S4 mentions in line 13. The restriction that S3 

said was around the length of the spiral, since it was related with how many times 

the pattern was repeated in the program.  

 

16 S5: There is a small problem here. We want :r to change in every 

repetition. Should we set a limit on the value of :r to stop the program? 

17 S4: I do not think so.. We do not want :r to be of limited set of values. 

18 S3: We should think of the condition to stop the program. Does it have to 

be related to :r? 

 

In line 18, student S3 posed a question, that made their conception of recursion 

clearer. Although in the program that T2 showed, the value of :x was connected 

not only to the ‘if’ condition, but to the properties of the shape (i.e., its length) as 

well, students did not need this relation between the conditional and the properties 

of the shape (as it seemed in line 16). So, the question of S3 was about using a 

certain aspect of a recursion program, to control the numbers of quarter circles, 

separate from the length of the spiral. They made it by using another variable :n 

(fig. 5). So, through their discourse around the mechanism of recursion, students 

adopted an element of it to solve a problem with personal value for them. Then 

they put it in use under their own agenda. 
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Figure 5: The image in the upper side was the sparker for students’ idea to make a spiral. In the 

lower side, there is the spiral they made using recursion. 

 

In this case, we believe that the students' creative action was to combine recursion 

with geometrical progression via the golden ratio problem. In fact they seemed to 

use the golden ratio as a means both to clarify how recursion works but also as a 

means to engineer a model based on the golden ratio using recursion to make a 

previously cumbersome solution much more mathematical in its expression. The 

creative mathematical action here was combining two distinct ideas to create a 

model which they themselves decided they wanted to create. The process was 

similar to the previous example to express a generalized value excluding 90. The 

only difference was the level of mathematical understanding and perhaps the 

impact range since connecting recursion to geometical progression can be thought 

of an interesting idea beyond the specific context of that particular class.  

Discussion 

The one thing that these two cases do not have in common is the level of 

mathematical concepts the students respectively chose to work on. The idea they 

generated and worked on in the first case was to seek for a way to express a 

generalized number barring one specific value in order to construct a class of 

objects barring a specific sub-class. Indeed, this was sparked by a superficial 
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understanding of class inclusion which could have been generated by the 

curriculum structure which identified class and sub-class by name in distinct 

sections each with its own set of definitions, exercises etc. Even though the 

students said that rectangle was a specific case of a parallelogram, they assumed 

that the absence of reference to the former in the task question meant that the 

required result had to omit it.  

What made the students out of their own accord wish to dig into this task further 

after having reached an acceptable solution? What was it about the classroom 

norms that gave them the space for agency and allowed for the students to select a 

mathematical idea from number theory, in other respects disconnected to the 

problem of properties of a geometrical figure? We suggest that Skovsmose's idea 

of a pedagogy enhancing space for agency is relevant here. For a researcher or a 

teacher, identifying creative mathematical actions would involve looking for 

situations where students felt it was legitimate to pose their own problems and to 

jointly engage in a quest to progressively articulate them and to search for a 

solution. In our view this is characteristic of undisciplined agency within a 

disciplined mathematical activity and this may provide a more focused lens with 

which to approach the first question of this study, what kinds of context allow for 

creative mathematical actions.  

The problem in itself, actually makes little mathematical sense, maybe one could 

draw out the idea of a discontinuous function but this was not on the students' 

mind. This was obvious in the first reaction of their teacher in line 7. The process 

however, subsequently encouraged by the teacher, was mathematical in the 

fallibilist Lakatosian sense, the search for a generality was mathematical and the 

generalized expression for odd numbers in a formal language which could be 

inserted as code in a program to engineer a generalized figure were mathematical. 

The teacher's refutation of the 'solution' of simply ending the slider range at the 

value of 89 was also done in this spirit, to validate the students' agency in this 

mathematical process but at the same time encourage them to pursue the search 

for a generalized solution to their problem. In that sense, the teacher steered the 

students back to disciplined thought but in the context of their own problem. In 

turn, the students seemed to take on the challenge posed by this refutation, to 

leave the dynamic face-value representation and search for generality in terms of 
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the formal language of the procedure. Furthermore, our point is that this was a 

case of possibility thinking (Craft et al, 2013) where a creative disposition at the 

time could well be seen as potentially generating subsequent creativity at a later 

time to use Glăvenau’s temporal idea of alternative perspectives. If the students 

felt good about their investigation and solution they would be disposed to take 

decisions to engage in mathematical activity again. To put it in other words the 

impact range of constructing an odd-angled parallelogram was within this group 

of students, or maybe at best communicated to the class of 26 but the impact on 

the students' disposition may well have been much deeper.  

We see the second case as an example of creative actions combining otherwise 

disconnected mathematical ideas. The students were introduced to recursion by 

been given a procedure generating a right-angled spiral and challenged to create a 

recursive procedure of their own. Their progressive perception of the essence of 

recursion was that it allowed mathematically expressed change at each iteration of 

a command. It was their idea to connect this to a prior task of effectively 

engineering a spiral based on the golden ratio, which they had attempted before 

but could only manage it with a cumbersome code writing down each iteration. 

Taking that perspective, their idea and solution is an interesting implementation of 

recursion to express geometrical progression and one could argue that if the 

problem was generalized it could have an impact range for mathematics beyond 

school mathematics. Looking at the students' activity however yields a kind of 

fallible mathematical activity similar to that of the first group of students. Here 

too the process was mathematical, the students saw a diverse implementation of 

an already generalized idea of a right-angled spiral and put this conjecture to use 

by creating a program for the quadrant arc spiral. The flow of communication in 

the process of engineering a digital model allowed for a mathematical problem to 

be expressed in this way, i.e. that recursion is a technique to express geometrical 

progression. Recursion was transformed from an object to analyze and understand 

to a tool with which certain genre of model can be built.  

So, in both cases we observed evidence of students’ possibility thinking in terms 

of posing new inquiries and asking ‘what if’, and we could say that disposition for 

creative mathematical action was apparent, in an interplay with meaning making 

around mathematics. Amongst the affordances of the context at hand we would 
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highlight the kind of discourse encouraged by the teacher, a kind of pedagogical 

engineering of agency giving students space and legitimacy for coming up with 

and owning their problems. At the same time, the digital medium afforded this 

dance of agency, the linked representations, the sense that the students could 

engineer any model they liked but also needed to work out properties of models 

embodying generalized functional relations in order to do so. An important 

affordance as we see it here is that with such tools, the stakes are much lower, i.e. 

the consequences of creating something buggy and unexpected are insignificant 

since tinkering with a model was the normal way to work.  

The medium, the discourse and the legitimization of creative disposition were 

intertwined and the teacher was only an integral part in this socio-technical culture 

as Fischer would agree (2004).  

However, the setting of a group of students using a digital medium like MaLT2, in 

a learning ecology like that of the two cases, sparked discourse around making 

things, designing, and putting ideas in use, and led to creative mathematical 

actions. An affordance also worth taking into account was the progressively more 

articulate and precise mathematical language used by the students and encouraged 

by their teacher. In both cases, we can see increasing accuracy as the discussion 

unfolds. These expressions became more and more concrete as the discourse 

became more dense.  

In conclusion this study left us with the conviction that it is well worth studying 

mathematical creativity in terms of the disposition and the density of student 

generated creative mathematical actions in transaction with the social and 

representational affordances of the context at hand. In our view this opens up 

many tough questions to pursue in order to understand and to encourage creative 

mathematical action in the classroom. How much investment is needed in time 

and energy and at what cost in relation to routine understanding and use of 

mathematical processes? Where is the individual in all this and how can 

individual creativity be drawn out of social engagement? And in the end, what 

kind of mathematical understandings can creative mathematical actions generate?  
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