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Abstract  

Programming is many things to many people, and not everyone agrees on its potential for human 

learning. This is especially true at a time when ever younger children are increasingly “expert” 

gamers, tweeters, information-seekers, and digital bricoleurs. Often self-taught, or at least 

grabbing much of what they know outside the classroom, today’s youngsters (also referred to as 

digital natives) indeed surprise, and on occasion surpass us, with their clever uses of all things 

digital. Question is: how much of this “expertise” is doomed sufficient by experts in the field? 

This paper looks at programming as an opportunity to address issues of agency, control, and 

interaction styles, as played out in the creative and critical uses of “smart” tools by curious 

minds. The focus is on views and uses of “programming” as a means for; 1) making things do 

things (instruct them to follow and execute orders); 2) “animating” things (endow them with a 

mind of its own, teach them to “look out for themselves”); and 3) poking things (modulate how 

things act or interact by tweaking some parameters in their environment). I present settings 

where youngsters are asked to give and execute orders, take over control and let go of it. I draw 

lessons for the design and evaluation of programmable play kits for young children.  
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Introduction  

At a time when computational devices have become an integral part of our lives, and make it 

easier to run programs, model interactions, and simulate behaviours, people’s ideas of what 

programming, modelling, or “simuling” are about are deeply changing, as are their ways of 

relating to existing authoring and editing tools.  More than in the past, performance and 

simulation are granted a new place besides language, and there is no doubt in most people’s 

minds that downplaying the role of new media literacy (literacies beyond print) would be today’s 

equivalent of promoting illiteracy. What is less clear, to this day, is the status of programming 

itself (beyond modelling and simulating), and its alleged benefits in helping youngsters acquire 

the competences they need to become fluent ITC users. In other words, how deep under the hood 

should we be looking, and why, in order to satisfy 21
st
 century skills requirements? What’s there 

to be gained in the first place? And what’s in it for the children? 

Programming is many things to many people, and not everyone agrees on its potential for 

learning. Understanding today’s children’s ways of navigating and blending physical, virtual, and 

digital, and using ICT provides a unique window into gauging the pros-and-cons of programming 

in the 21
st
 century. It does so by challenging our own assumptions on what it means to be smart, 

literate, or creative, athus  allowing us appreciate the natives’ strengths before we advise on what 

they’ll be missing, if left on their own (Ackermann, 2011).   

The purpose of this paper is to discuss the intricacies between modelling, simuling, and 
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programming from an experiential perspective. Building on research with, and observations of, 

children, we explore issues of agency, control, and interaction styles, or relational preferences, as 

played out in the creative and critical uses of “smart” tools: in this case, any artefact or device, 

physical or virtual, that is either seen as being responsive and inner-driven, treated as if it were, or 

made to do things on its own. The focus is on how children, and adult-experts, use and think of 

“programming” as a means for exploring and optimizing the interplay between a human (usually 

themselves) and unequally responsive, surprising, or reliable devices.  

I discuss why exploring the “logic” of gives and takes, through interacting with, relying on, or 

controlling “smart” toys, or endowing stuff with smarts, can enrich our experience and 

understanding of “programming” (in the broad sense of “making things do things). I present 

settings in which youngsters are invited to use objects as models, give and execute orders, take 

over control and let go of it, animate things, and simulate behaviours. I draw lessons for the 

design and evaluation of “programmable” play [-learning] kits for young children. 

New media ecologies, new genres of engagement: the changing 

relations between today’s youngsters and their artefacts 

Animated toys have always occupied a special place in people’s lives. They are intriguing 

because they do things. Sometimes they even seem to have a mind of their own. Many are 

responsive to our solicitations. In all cases, objects that behave are treated differently than inert 

toys. Clearly, toys need not be animated to be” made to behave” in a child’s imagination. In their 

pretense play, children endow things with life all the time. Puppets, dolls, stuffed animals, and 

even sticks and brooms are made into living beings, and endowed with all kinds of special 

powers. Yet, toys that actually behave elicit new ways of relating, and are used in different ways 

(Turkle, 1984, Ackermann, 2000) 

Things that do things, and “telepathic” toys   

Things that do things are “objects-to-think-with”, in Papert’s sense, yet of a particular kind 

(Papert, 1980). They intrigue us because of 1) their hybrid nature (look like things yet act like 

people); 2) their relative autonomy (responsive but with a mind of their own); and 3) their singular 

form of “smarts”. It is their believable artificiality and “forgiving” nature that make it possible to 

explore, enact, and work through issues of identity formation and object-relations, and to learn 

about how different creatures [people, animals, plants] or things [stones, tools, machines] act in 

the world, communicate amongst themselves, and respond to a child’s solicitations.  

What I call “telepathic” toys have this additional property that they respond to our solicitations at 

a distance, or at a later time. So, for example, if I push a button on my controls, a cartoon sets 

itself in motion on a TV screen, at the other end of the room; and as I zap between channels, I can 

feel the thrills of making things appear and respond remotely.  No surprise if even very young 

children fall in love with light switches and remote controls! A similar thrill can be felt as we 

engage in face-to-face communication with close friends, away from home, via skype.  

Distance action, remote control, and tele-presence, I suggest, are at the core of what programming 

is about, at least experientially, because it is no longer just a matter of making things do things by 

pushing them around physically. Instead, it is about signaling what it is we want them to do. It is 

about “telling them”, giving them orders, or instructions, mediated-ly. As parents say to their 2 

years olds: Use words! Don’t just punch (or use brute force)! 
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Things that stand for something else, and things that stand on their own! 

In a rich corpus of experiments, Judy De Loache and colleagues have shown that young children 

have difficulties in understanding the representational nature of objects that are interesting in 

themselves (De Loache, Uttal & Pierroutsakos, 1998). A scale model of a room, for example, is 

salient and appealing in its own right, and treated as such by a 3-year-old. In the well-known 

teddy bear experiment, a scale model of a room gives children information about a full-sized 

room that the model is meant to represent. In a preliminary phase, DeLoache makes it clear to the 

children that the scale model is an exact mini-replica of the full-sized room, and that whatever 

happens in the model simultaneously happens in the room: “A big bear lives in the big room and 

a little bear in the little room. Whatever the baby-bear does, the daddy-bear does too”.  De 

Loache then hides the baby bear in various places in the scale model and asks the child to find the 

big bear “who is hiding at the exact same place in the big room”. Understanding that the 

miniature replica stands for the larger room, the authors argue,  requires that the child disentangle 

two functions embedded in the scale model: while it is an object in itself, it also serves as a 

representation of something else. Such dual representation is not constructed before age four..  

Variations on the teddy-bear experiment further suggest that the task is, ironically, made easier if 

the “model” is a picture (2D) or, even better, when the symbolic relation between model and room 

is altogether removed. This was done in the ingenious “shrinking room” experiment, where 2-3-

year olds are told that the scale model actually IS the room —which has been shrunk by the 

incredible shrinking-machine. The enactment of the shrinking operation, as unbelievable as may 

be, is well understood by the children, and “forces” the model-room equivalence, thus allowing 

for successful retrieval. According to De Loache, reserachers generally agree that arbitrary symbol 

systems, such as numbers and letters, are difficult for young children because they bear no 

resemblance to their referents. What is less obvious, is that the more engaging a “representation” 

is for its own sake, the harder it is to treat it as something which stands for something else. And 

indeed one wonders, why wouldn’t children take a 3D model just for what it is: a little theatre, a 

doll-house of sorts, a mini-stage where they can enact and play out different scenes afforded by 

the décor, props, and mini-figures (like teddy-bears)? 

Models, simulations, microworlds  

In discussing the implications of their findings for education, De Loache and colleagues express 

doubts as to what children may take away from watching edutainment programs, such as "Sesame 

Street,” in which letters and numbers are being personified, and in which they talk, sing, and 

participate in beauty pageants. In their view, turning abstract symbols into concrete objects is 

likely to make their meaning less, rather than more, clear to young children (De Loache, Uttal & 

Pierroutsakos, 1998). Does this imply, as the authors suggest, that symbol systems, or models, 

ought to be more abstract, less lively, to engage learners in symbolic activities?  I am not sure. 

Children’s resistance to treating interesting objects as representational may be call to challenge 

correspondence theories of representation altogether (Lakofff & Johnson, 1981), by recognizing 

that external representations, or models, are never copies of reality but translations. And like any 

translation, they transform the original. If such is the case, why not let kids be the naïve 

correspondence theorists they are, and encourage (rather than dissuade) them to treat a model 

(static or dynamic) not as a simulator but as a stimulator (Resnick, 1990), or a microworld 

(Papert, 1980). The difference between the two lays in their truthfulness to reality. While 

simulations are generally meant to be true to real, microworlds, as Papert defines them, claim their 

status as alternative “realities”. Their purpose is not to mimic, but to bring into being and open up 

for scrutiny otherwise invisible mechanisms or unthinkable thoughts.  
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In sum, rather than debating whether representations should be more or less abstract, a more 

radical view is to move away from correspondence theories altogether, and to provide learners 

with a rich and varied palette of tools, techniques, and manipulatives, to help them capture, 

visualize, enact, and revisit otherwise “hidden” aspects of some intriguing phenomenon.  

Machines and  mechanisms – Agency, causation, delegation 

Early on, children endow objects that behave with a life of their own, and treat them as if they 

were animated. This not to say that 5-year-olds believe that a computer or a robot is alive: They 

know it is not (Carey, 1985, Turkle, 1984). Yet in their play, the children still treat them as social 

agents capable of initiating, sustaining, and controlling behaviours. Research on children’s 

animism by Inagaki & Hatano (1987), Carey (1985) and Steward (1982) further suggests that 

children’s tendency to attribute agency applies beyond ‘intelligent’ artefacts to include 

transactions among objects in general.  

The most striking characteristic of children’s understanding of causal transactions is that they 

describe the moves between interacting entities (alive or not, agent or recipient) in terms of how 

each impacts, or is impacted, by another’s behaviour, either through direct or mediated action. 

Note that in the case of direct action, an agent A does something to a recipient B, by impacting it 

physically, whereas in the case of mediated action, agent A signals something to B, and B acts or 

signals back accordingly.  In both cases, agents at play tend to be animated, at least while 

currently active, and recipients tend to be objectified. In a chain of transactions, any particular 

object is by turns seen as an agent or a recipient, depending on whether it is perceived as 

generating an action from within (agent), or responding (recipient). (Ackermann , 1991).  

A study by Ackermann and Brandes (Brandes, 1992) on children’s conceptions of simple 

machines brings further evidence to the notion that the criteria used to determine 'machineness' are  

relative to a tool’s ability to give back something different than what was put in the first place. In 

exploring elementary-school children’s sense of mechanism, we asked small groups of 5 to 9 

year-olds what, in their eyes, makes something a machine, and how machines work. We then 

presented individual children with small collections of images showing instances of devices with 

similar functionality, yet different in their source of power, level of complexity, and control 

mechanisms. We asked the children which of the objects were machines, and why. Examples of 

collections include: skateboard, bicycle, car (all used for transportation); and scissors, power lawn 

mower, push lawn mower (all used for cutting). Items were spresented one by one.  

Although children were far from unanimous as to which objects were machines, a number of 

regularities emerged. In session one, all groups produced definitions by use (A machine is 

something that helps you go places). Groups’ ideas on how machines work revolved around four 

arguments: they have motors, powers, electricity, or a mechanism. In session two, individual 

children’s groupings showed that almost everyone drew a line between machines and non-

machines in terms of an object’s ability to transform an input in significant ways. An object, then, 

is a machine if it modifies what you do to it in ways that make a difference. Thus for one child 

Scissors are not a machine because “it’s you who cut”. A push lawn mower is a machine because 

“you push and it cuts”. To the question: “what are scissors then? The child answers “a tool”. For 

another child a car is a machine because “it has a motor”. A bike is not a machine because “its 

you who pedal”. Yet a bicycle-powered aircraft (as seen at Boston Science Museum) is a machine 

because “if you pedal and it flies...then it’s got to be a machine”! In all cases, the value added 

requires an entity capable of generating it from within. Yet the entity itself is often treated as a 

black box. Only upon request do children refer to it as the 'brain', the 'motor', or the 'powers'.  
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What does this all have to do with programming?   

Media theorist and critic Douglas Rushkoff has a saying: Program or be programmed! In his 

view, if we don’t partake in creating a culture that at least knows there’s a thing called 

programming, then we’ll end up being not the programmers, but the users, and, worse, the used.  

To which he adds: ”Whether or not today’s “creatives” (artists, designers, makers) are interested 

in studying the impact of technology per se, the learning and sharing of techniques that most 

people accept passively is a statement of emancipation from unidirectional tech consumption 

(Rushkoff, 2010). This view is not so different from Papert’s own statement that computers 

shouldn’t be used to  “program “the child, but that the child should program the computer and, in 

doing  [I quote]:  “acquire a sense of mastery over a piece of the most powerful technology and, 

at the same time, establishes an intimate contact with some of the deep ideas from science, maths, 

and the art of intellectual model-building” (Papert, 1980).  

Problem is: Like computation itself, programming is a Pygmalion. It becomes what you want it to 

be. To a scientist, for example, it may be a powerful tool for modeling or “simuling” the dynamic 

pattern of interactions at play in a complex ecosystem. To a game-designer, it may be a means to 

create a 3D interactive virtual habitat or an animation. And to a developmental psychologist, of 

which I am, the most intriguing and somewhat under-explored promises of programming lay in 

its ability to bring to the fore issues of control and communication between humans and machine 

(Ackermann, 1991).  

Programming has also changed, both its look-and-feel and nuts-and bolts, with the developments 

in computing (object-oriented programming, parallel distributed computing, A-life) as well as the 

uses of informal ‘programming’ (ambient computing, paper computing), and its growing 

popularity among non-computer-scientists. New materials, display and projection capabilities are 

at people’s avail allowing many adults—and youngsters— these days to “program,” one way or 

another, which makes one wonder: What is programming in the first place?  Is it about writing 

code? Is it a way of thinking?  Anything in-between? The answer to this question is not simple.  

 Programming games – Learning from the children! 

Programming, at its core, is about giving instructions—or commands—to be executed by a 

machine. Clearly, the machine needs not to be a computer. It can be a robotic device or a set of 

‘smart bricks’. And the commands need not be typed on a keyboard, but can take the form of 

components to be assembled manually, icons to be snapped into place, and increasingly, voice, 

gesture, force-feedback.  As Eisenberg and Buechley put it, While it is unlikely that “classical” 

programming will (or should) disappear, it will ultimately be one among a much larger landscape 

of programming styles–physical, tactile, sensually rich, athletically demanding. And as 

“programming” comes to suggest a different type of activity, the stereotyped portrait of “the 

programmer” itself will evolve (Eisenberg & Buechley, 2009. 7).  

The focus in what follows is on views and uses of “programming” as a means for 1) making 

things do things (instruct a device to follow and execute orders); for 2) “animating” things 

(endow a device with a “mind of its own”, teach it to “look out for itself”); and for 3) “poking” 

things (modulate how things act or interact by tweaking some parameters in their environment). I 

present settings where youngsters are asked to give and execute orders, take over control and let 

go of it. I draw lessons for the design and evaluation of programmable play kits for young 

children). 

 Programming as giving instructions: Tell it what to do!  Instructions, or directions, can 
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be passed on verbally or cast on a piece of paper. This is usually not thought of as 

programming. In a program, the orders given should meet a responsive medium able to read 

and execute them. In other words, orders are encrypted as a series of operations to be read 

and run by a “smart” device. As a way of illustration, imagine the following scenario in 

which children tell their “smart toys” what to do. 

S1 Bossing around your robotic dog. [Vignette]: A bunch of 5-8 year olds are clapping in their hands to 

get a robotic dog toy to wiggle around. If they clap once, the dog wiggles its tail, if they clap twice, it 

wiggles it head, frantically (as if smiling), and if they clap 3 times, the dog sits down.  [Comment]: 

This way of bringing simple “programming” operations (in this case if-then rule) into the 

environment is not unlike what Eisenberg (2009) refers to as ‘ambient programming.’ 

S2:  Telling tales with Tell-Tale. [Vignette];.  A group of 4 to 8 year olds are busy telling short story-

fragment into a small hand-held recording device in the shape of a ball: Five kids, five recording 

balls of different colours, five story-bits. Once the story-bits are recorded, the kids hook together the 

balls to form a “caterpillar”, called “Tell-tale.  [Comment]: Tell Tale, is fairly silly. All it does is to 

play back a string of recorded bits, from its head to its tale.  Its ingenuity, however, lays in the fact 

that it lets the users in, and re-combine previously recorded story bits to compose more interesting 

narratives. And the kids are quick to learn to improve the tale. Each time, they change the order of 

balls and/or record a new story-fragment. (Annany, 2001) 

  These vignettes show that while programming requires a responsive medium able to read and 

execute a set of instructions, we do not usually speak of programming if a single input triggers a 

single immediate response (as in ringing a doorbell or turning on a radiator). Yet we may, and 

many children do, if we set a thermostat to turn on the heat whenever the room temperature drops 

below a certain threshold, or if we set an alarm to ring at a later time, or in a different place.  

S3:  Setting your washer/dryer - To a typical 6 to 9 year old:  I’m not programming if I “tell” my 

coffee grinder to grind my coffee, or when I start my car but I AM programming when I set my 

washer to soak, wash, and rinse my cloth”[…] because even if I just turn a knob to start the program  

“it knows to do the job all the way through”. [Comment]: it is not always clear to children this age if 

THEY are the ones who program the machine, or if the machine itself is programmed to “respond 

and get itself going” as they turn a knob or pushing a button  (Ackermann, 2000, Brandeis, 1992). 

Programming-as-giving-instructions is best thought of as a dialogue-in-action in which a person 

[the child] tells, or teaches, a thing [EX: a washer] to do something [like washing laundry] on her 

behalf. In other words, a child delegates a job to a thing and, provided the instructions are 

understandable to that thing, it is going to do, on its own, what it was asked to do. The name of 

the game is: “make things do things”. Incidentally, our own research on children and machines 

indicates that for children too programming is about getting a machine, computer or toy, to help 

you do things that require smarts. And like computer scientists, the children are sometimes unsure 

if the “smarts” reside in the machine itself or in the person who designed, or used, the machine  

  Programming as lending autonomy: Make it “look out for itself”. With the avent of 

object-oriented and parallel distributed computing, people’s views on programming took on 

a different tinge, which comes with its own share of underlying metaphors: 

   Metaphor 1: From servile executant to autonomous agent: From doing things for you, the 

machine or smart toy is now meant do its own thing. From being a slave, it becomes a self-

regulating device, or cyber-creature. It is gaining autonomy. Unlike its servile predecessor, 

it come equipped with sensors, motors, and all the in-betweens to help “it” see the world its 

own way, have its internal reference values, and optimize “its” moves accordingly.   

   Metaphor 2: One to many:  The idea here is to define an object’s behaviors in terms of 
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attributes and methods (states, preferences, actions), and then thave different objects, each 

with their own attributes, interact with one another, to form wide webs, or agencies, of 

interconnected agents. Many emerging patterns form as multiple entities interact with one 

another. Imagine the following scenarios: 

S4:    Critters, critters, and critters! [Vignette 1]: No computers are in sight. Elementary-school children 

from a Boston inner-city school are building animated sculptures, vehicles and creatures, out of 

LEGO bricks augmented with motors and sensors, plus objects that look like LEGO bricks from 

outside but in fact are computational elements (flip-flops, “and” gates).  One vehicle, or creature, will 

go towards a bright light. It has 2 light sensors to its left and right: If one is brighter, this will cause a 

motor to turn a wheel on its side. [Project Headlight. LEGO Logo workshop, 1986].  [Vignette 2] : 

Even younger children, in Reggio Emilia, build and play with funky cyber-creatures that interact with 

their environment and with one another. Children can build and/or influence their behaviors by acting 

upon their sensors and/or reconfiguring its parts. [CAB Project: http;//cab.itd.ge.cnr.it, 2000]. 

[Vignette 3]: Children take the programming operations into the environment to drive their turtles, 

but this time, in the form of bar-codes on “stickers” to be read by a program reader (Eisenberg, 2009).  

 

Research on children and robots suggests that interacting with artifacts that exhibit self-regulating 

behaviors is different from giving instructions to things that executes orders. In each case the 

degree of autonomy of the artifact is different, and so are the children’s reactions (Ackermann, 

1991). To many, undoing a creature to see what’s inside the black box is not the point. Instead, 

they focus on optimizing the dance with a creature and, in doing they experience and play out the 

trade-off and potential of mutual influence, and shared control. The purpose is to converse rather 

than construct, to attune rather than break down, to empathize rather than analyze. 

 

 Programming as “poking”: Don’t start from scratch. Make do with what’s there !   
More than in the past, today’s computational tools and materials encourage people to 

program in a weak sense, by modulating rather than making, or tweaking existing programs, 

without ever having to produce a single line of code. Creators can import chunks of text, 

image, and sound [including code], which they then re-combine as they please. In other 

words, no need to start from scratch: You borrow what’s there, and you “ “remix”. This shift 

from creating to modulating existing behaviours has important implications for education. 

S7: Assemblages [Vignette] A connected -classroom and a bunch of 8 year olds, sitting in front of 

their laptops. Each child is busy “writing” for a class project on Egypt (to be shared online). How 

do you think the kids proceed? Well here’s what they do: they surf on the web until they hit some 

page they really like.  They import the page, or parts of it, and they use it as a template that they then 

“massage” until it no longer resembles the “found” original or inspirational seed, but becomes their 

own. [Comment}: This found art approach to writing generates big controversies among educators 

who wonder if children thse days (by shamelessly borrowing and tweaking) are still writing, let alone 

be the authors of their writings. My contention is that, provided the borrowers “massage” a template 

long enough, they indeed are writing! It is not exaggerated to say that there is not such a thing as 

writing on a blank page. The same can be said of programming (Ackermann, 2011) 

From a psychological perspective, the difference is significant between using programming to 

instruct and obedient contraption (as in Turtle Geometry) and to influence the course of a self-

regulating device by intervening in [as a part of] its own environment (as in mindstorms). And so 

is the difference between ‘dancing” with an artificial partner and bossing around a tech-toy.  In 

what follows, we’ll see that some people are more inclined to favor one approach over the other.  
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Why learn to program?  

If, as we suggested, programming is about giving instructions, lending autonomy, and modulating 

existing behaviors, the question remains: What’s in it for the children? Why should preschoolers 

do it? In the light of the discussion so far, I can think of at least 3 reasons worth considering:  

 Mastering things: take over /let go /take over - Through giving instructions, young 

children gain mastery over their world. They create and control things to execute their 

orders. They set them in motion, make them do things, and  “boss them around”. How could 

this not boost a 3 years olds’ craving for omnipotence! At the same time, and ironically, by 

giving orders to an artefact reliable and smart enough to execute them, children also learn to 

let go and to delegate. And delegation entails distribution of control because as soon as the 

artifact executes a child’s orders, it also acts on her behalf, by taking on a part of the job.  

In a playful way, the child can explore issues of task sharing (who does what for whom) and, in 

doing, learn a great deal about the pros-and-cons of taking over versus letting go, so crucial in 

any type of transaction, be it with people or with things. Besides, even the most obedient of 

artificial critters, like Papert’s Logo Turtle, is bound to behave unexpectedly (be non resilient) if 

the commands the child enters are unclear, i.e., unintelligible to ’its’ kind of mind. In playing 

turtle, children are given an unique occasion to learn to state explicitly what they want. 

 Animating things: create / animate / interact - By building and playing with things that 

act as if they had a will of their own, young children learn about the ways in which animate 

and inert objects regulate their behaviours, and interact with one another. Teaching things to 

“look out for themselves” and watching them do ‘their’ things is enjoyable because, beyond 

executing orders, the creatures have now gained autonomy. They can be made to follow 

light, avoid contact, or dance with one another.  And it is fun to enter the dance with them.   

In a playful way, the child learns to distinguish between self-driven and other-induced, between 

inner- and outer locus of control. She interacts with new forms of intelligence, different from her 

own and gains insights into what it means to be “animated” or “smart”, for a person and a thing.  

 Modulating things: take it as is / tweak it / let it be - More than in previous generation, 

today’s children are often bricoleurs instead of planers. They are a new bread of makers, 

hackers and hobbyists eager to gather, collect, create, and trade objects, and ready to make 

do with what’s at hand 
1
 They repurpose (remix) the stuff they find, endowing it with a 

second life or extra “powers”. And as they grow older and perfect their technical skills, they 

often engage in the art of digital crafting and fabrication If given a chance and provided 

appropriate support, today’s kids won’t merely consume and dispose. Instead, they will 

create and recycle.  They will care! (Ackermann, 2011) 

In a playful way, the child learns to distinguish between recycling, starting anew, and adding 

value to what’s there. It is in great part today’s kids’ confidence in—and knowledge about—how 

to fix and mend things, together with a belief in the benefits of iteration (layering, refining), 

afforded by computational devices, which hold the potential to bread a new culture of crafting. 

                                                 
1
 A bricoleur is a jack of all trades or “Bastler” in German. Lévi-Strauss depicts the “bricoleur” as adept at many 

tasks and putting existing things together in new ways. The Engineer, in contrast, usually starts from scratch, with an 

outline, and plans ahead 
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Who likes to program?  What’s in it for young children? 

Not all children like to program. Not all programming feels the same. And the notion of 

programming itself, as debated among experts, is changing as we write.  

Starting with the children, some may (on occasion and depending on their personal style) do 

anything to feel in charge, while others won’t mind to delegate, or negotiate. Some will get a kick 

out of guessing and planning ahead (i.e., write procedures), while others prefer to make up their 

mind as they go (i,e, write step by step commands). Others yet, the bricoleurs, like to compose 

with what’s there (i.e. borrow and edit code). In spite of these differences, it is fair to say that 

most children, when given a chance, will be happy to create things, or make stuff, and bring their 

creations to life, i.e give them ‘extra powers’! Our own research indicates that children’s 

apprehension of computational devices is at usually both instrumental and relational (Ackermann, 

1991). What changes is the amount of building or “dancing” involved, the metaphors they draw 

from, the quality of the materials, and the play scenarios they get excited by.  

For very young children, programming as modulating existing behaviors may be a way to go, 

although one wonders: Is this still about programming? 

A program, we have seen, is more than one thing, and not all programming feels the same. Many 

new materials, settings, and display surfaces are at people’s avail, these days, which make 

programming a far more informal, approachable, and natural activity than before. As Eisenberg 

and Buechley write: “On the one hand, a variety of traditional materials–fabric, paper–can now 

be employed as the background substrate for programmable artifacts and displays; that is, it is 

possible to work with programmable materials. In a similar vein, one can devise means of 

placing small, informal “chunks” of programs within physical environments, where they may be 

read or executed by mobile computational devices–a notion that we refer to as ambient 

programming
2
 (…) Finally, there are novel types of display surfaces that may be used as the 

backdrop for relatively unexplored styles of programming” (2009, 1-2). These changes in turn 

inform the terms of the debates about the potential of programming for young children. 

Our own observations of children and adolescent’s uses of sensors, actuators, materials, smart 

bricks, and circuits  (in different robot, STEM, and STEAM workshops) confirmed, time and 

again, that the materials used and the types of activities proposed have strong built-in 

‘affordances”, which need to be taken seriously. For example, LEGO bricks favor orthogonal 

structures. One must work hard to make anything curvy. Also the do-undo-redo quality of most 

computational construction-kits favours tinkering over crafting. A second type of bias occurs 

when designers and educators impose their own limiting views on what should be built, and how. 

Different play scenarios excite different minds. In order to cater to personal, gender-related, and 

culturally related preferences, my best advise to this day is: Offer rich and diverse materials and 

imagine a range of play scenarios that may capture different kids’ imagination, and they’ll do the 

rest… 

Lastly, I wish to echo Seymour Papert’s own teachings when he advised not to teach children to 

program for the sake of programming. Instead, he said: use the knowledge of programming to 

create contexts where other playful learning can happen. Children will engage in programming if 

they can get something out of it right now –not later when they’ll grow up! And this, to Papert, 

                                                 
2
 The idea of “ambient programming” suggests that programs can be constructed in informal, moment-to-moment 

ways. One might alter the “program” shown in Figure 9 by physically messing about with cards upon the floor, 

changing positions and putting down new cards. 
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doesn’t imply that it won’t take much work, or effort, to become fluent at what they are doing. 

The implication is rather that “hard fun” is usually more challenging to the children who, we 

know, can spend hours on something, repeatedly, when they are genuinely interested. Thus, the 

question is not so much “ what is the effect of programming, or using computers, on learning”. 

Instead, we should ask: Can computational tools provide new venues for learning and play, for 

exploring, expressing, and sharing ideas, otherwise impossible. 
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