
Use of MaLT

The final version of MaLT consists of five components namely:

• Turtle Scene (TS). The main part of this component provides representations of
geometric objects allowing navigation within the 3D virtual space (Figure 1).

• Logo Editor (LE). This component is the Logo-like programming interface. The

user is able to write, run and edit Logo programs. For a detailed description of all
the available commands, see the Specifications of the First Version of MaLT,
www.remath.cti.gr in Forum, WP2) (Figure 1).

• Variation Tools. This component is the dynamic manipulation feature of the
computer environment providing means to represent and handle variation of
variable values. In the final version of MaLT it consists of the Uni-dimensional
Variation Tool (1dVT), the Two-dimensional Variation Tool and the Vector
Variation Tool.

- Uni-dimensional Variation Tool (1dVT). This component provides means to
handle and represent variation of variable values in MaLT. The main part of this
component consists of ‘number line’-like sliders, each corresponding to one of the
variables used in a Logo procedure. 1dVT is thus energized only when the user
defines a Logo procedure, run it for a specific value for each variable and then
click on any part of the figure (Figure 2). In the first version the menu is only in
greek but all the available commands in english.

- Two-dimensional Variation Tool. The 2dVT is a 2d bi-axial coordinate system
with two axies (x and y) in the form of an orthogonal pad. It can be used for
defining the co-variation of two variables selected by the user and thus it appears
only if we edit and define a procedure with at least two variables.

- Vector Variation Tool (VVT). The VVT allows the co-variation of three
variables by using two 2d representations of a vector defined by these variables
according to an (r, φ, θ) polar semantic in 3d space (for a detailed presentation of
the VVT see in pages 6-8 of the manual).

Figure 1: The main part of the final version of MaLT without any procedure (and thus

any of the variation tools).

Turtle
Scene
(TS)

Logo
Editor

Message window

First use instructions

1. The turtle. When the user opens Malt the turtle doesn’t appear. He/she must write
at least one command at the Logo Editor to see the result on the TS (top left
screen).

2. Execution of commands. Execution of commands is achieved by pressing Insert

when the cursor is in the same line with the command.

3. Working with 1dVT. The user has to write and run a Logo procedure with at least

one variable.

Step 1: Write a Logo procedure with at least one variable.

For example:
to rect :a :b :c

repeat 2 [fd(:a) rt(:c) fd(:b) rt(180-:c)]

end

Step 2: Run this procedure for one value for each variable.

Write the name of the procedure and one arithmetic value for each variable.
For the above procedure, e.g. rect 20 30 40
Then press F5.
The figure (rectangle) corresponding to these specific values will be designed in TS.

Step 3: Click on any part of the figure. (Be careful not to resize the TS before clicking
on the figure).

After a while the 1dVT will appear on the left bottom of the screen.

Figure 2. The 1dVT.

4. Cleaning the TS so as to execute new commands/procedures.

See at the following figure.

Figure 3. Cleaning the TS.

Clean the TS in order to run a
new procedure and visualize the

result on the TS.

The variables of the
procedure.

Drag any of these and the
value of the procedure

changes. You can see the
result on the 3D screen.

The numerical range of the variables. The numbers in the boxes represent the initial
and the end values of the variables as well as the step of their variation.

5. Opening and Saving a File. See at the following Figure.

Figure 4. Opening and saving a file.

6. Working with 2dVT

The 2dVT is a 2d bi-axial coordinate system with two axies (x and y) in the form of an
orthogonal pad. It can be used for defining the co-variation of two variables selected by
the user and thus it appears only if we edit and define a procedure with at least two
variables. It is activated through the 1dVT after selecting two variables and clicking on
one of the two axes of an icon representing an orthogonal bi-axial system, which is
placed next to each slider.

In the following example (see next Figure) we have selected in 1dVT variable ‘a’ to
represent the y-axis in the 2dVT (clicking on the vertical axis in the ‘little’ orthogonal bi-
axial system next to the slider for variable ‘a’ in 1dVT) and variable ‘b’ to represent the
x-axis in 2dVT (clicking on the horizontal axis in the ‘little’ orthogonal bi-axial system
next to the slider for variable ‘b’ in 1dVT). Clicking on these ‘little’ axies for the
selection of the respective variables there has been a change in their colour from red to
green.

New

Open

Save

Figure 5: Selection of variables a and b in the 1dVT to co-vary in the 2dVT.

The effect of using the 2dVT is that of co-variation of two variables. The numeric domain
of the two variables is that defined in the 1dVT. Any change in the numeric domain and
the step in the 1dVT is transferred automatically to the system of coordination on the
2dVT.

Each position on the pad represents a value for each of the two selected variables, one
representing the x-axis and one the y-axis, respectively. A trace is drawn when the mouse
is dragged. The numeric changes in 2dVT can be seen simultaneously to the respective
sliders on the 1dVT.

If one coordinates the dragging to approach – or to define or to guess after experimenting
- a functional relationship underlying the co-variation of two variables then the result
would be the graph of this function.

7. Working with VVT

The VVT requires a procedure with at least three variables. Next to each slider in 1dVT
there is another icon to activate the VVT. Clicking on this icon activates a pop-up menu
with three choices: vector r, angle θ and angle φ (Figure 3). The semantic behind this type
of representation is (r, φ, θ) which means that r stands for length, θ for the angle between
the vector’s projection on the zx plane and the z-axis and φ for the angle between the
vector and the zx plane (See figures 7, 8, 9).

The bi-axial system
for the selection of

variables to co-vary
in 2dVT. The 2dVT.

Figure 6: The (r, θ, φ) semantics for energizing the VVT using any three variables.

Figure 7: A schematic representation of the (r, θ, φ) semantic.

The pop-up menu
opened to select

the (r, φ, θ)
variables in VVT.

The icons to open
the pop-up menu.

Figure 8: A schematic representation of the angle θ.

Figure 9: A schematic representation of the angle φ.

Τhe user can select which variables will stand for r, θ and φ respectively. The VVT
vector tool consists of two vector-like representations, which appear as two square
windows having a common side. One representation stands for the projection of the
vector on the horizontal plane zx. The user can dynamically manipulate the length of the
vector’s projection on the zx-plane and rotate it with respect to its inclination with the x-
axis, angle θ.

The second representation stands for the plane formed by the vector and the projection of
the vector on the horizontal plane zx and the user can again manipulate the vector’s
length and rotate it with respect to its inclination with the zx-plane, angle φ. These two
representations sit side by side on the screen. This means that the VVT does not allow the
manipulation of the resultant vector value, but only of the constituent projections on the
two planes. The values seen on the VVT will thus be different to the ones observed on the
1dVT.

The VVT has a third component (Figure 7), where the resultant vector appears in a cube-
like box. This component is not manipulable; its function consists of merely representing
what happens to the resultant vector as either of the two projections change (Figures 8
and 9).

The polar values are represented graphically by the vector itself and numerically by digits
in corresponding text boxes. The cartesian ones are represented by the visible projections
of the vector on the two axes and digitally again by text boxes (Figure 10).

Figure 10: The VVT. The second and third representations on the right are manipulable
while the first -which represents the vector in 3d space- changes only as a result of
manipulating either of the latter two. The two square window projections contain both
polar and cartesian values represented in the small colored boxes below each
representation.

8. Insert 3d objects in the Turtle Scene

Type

The 3d object should be type .x (if we have objects of another type we have to change
them using an appropriate 3d graphics program that supports this type of objects).

Loading

In order to load a 3d object at the Scene we have to use the following procedure:

to loadObject :filename
 localmake "result
 getObject(engine.CreateMesh("|media\models\|+:filename))

The
VVT

 getMesh(:result).setVisible(true)
 output :result
end

This procedure can be used for any object named “filename” so it is better to use it once
in our program and then load many objects using another procedure.

Letters in red, specify the path that the object is located. We usually use this as the
default path to locate our objects, but we can also use another path, writing the exact
address each time. If an object is located in another folder except MaLT’s folders, we use
the absolute path.

For example, if the object ball.x is in a folder named MaltModels in our desktop, we
replace the path with: C:\Documents and Settings\user\desktop\MaltModels\.

In order to load the ball at the scene we use the following procedure:

to ball
 make "ball loadObject("|ball.x|)
end

Placing

To place the object (in our example the ball) in a specific place in 3d space of Malt we
use the following procedure:

to place :ball :x :y :z
 getMesh(:ball).setLocation(engine.createVector3(:x :y :z))
end

Using this procedure we can place our object in any place. For example if we want our
ball to be at x=1, y=3, z=5 (coordinates) in our program, we can use the command:
place(:ball 1 3 5)

9. Different camera viewpoints

MaLT has a default viewpoint of seeing the turtle or the objects inserted. In order to
change the viewpoint we have to move the camera in 3d space. In order to do this, the
first step is to define the camera’s location using the following procedure:

to placeCamera :X :Y :Z
 camera.setLocation(engine.CreateVector3(:X :Y :Z))
end

Different camera viewpoints can be controlled through the x, y, z coordination system. So
we must define how the coordinates will change and in which way. For example we can

specify keyboard buttons that define changes in camera’s coordinates. The following
example is indicative the way camera moves.

Procedure to initialize variables

to init
make "camstep .2
make "xcam 1
make "ycam 1
make "zcam 1
end

explanation:

• make "camstep .2 → defines the step that camera moves
• make "xcam 1 → defines the initial camera x coordinate
• make "ycam 1 → defines the initial camera y coordinate
• make "zcam 1 → defines the initial camera z coordinate

Procedure to define buttons’ actions and camera’s changes according to coordinates

to run
if engine.KeyDown(DIK_LEFTARROW) [make "xcam :xcam-:camstep]
if engine.KeyDown(DIK_RIGHTARROW) [make "xcam :xcam+:camstep]
if engine.KeyDown(DIK_UPARROW) [make "ycam :ycam+:camstep]
if engine.KeyDown(DIK_DOWNARROW) [make "ycam :ycam-:camstep]
if engine.KeyDown(DIK_A) [make "zcam :zcam+:camstep]
if engine.KeyDown(DIK_Z) [make "zcam :zcam-:camstep]
placecamera(:xcam :ycam :zcam)
if engine.keyDown(DIK_ESCAPE) [setCallBacksEnabled(false)]
camera.lookAt(engine.createVector3(0 0 0) FAST_SPEED)
end

explanation:

• First six commands define the buttons that change camera’s coordinates.
• placecamera(:xcam :ycam :zcam) → places camera in coordinates
• if engine.keyDown(DIK_ESCAPE) [setCallBacksEnabled(false)] → defines that

escape button stops navigation with the buttons
• camera.lookAt(engine.createVector3(0 0 0) FAST_SPEED) → initializes

camera’s viewpoint
Editing the procedures described above and running the ‘run’ procedure you can move
camera with the arrows, A and Z buttons. With Escape button deactivates the camera.

Examples of Logo Procedures

1. Construction of a twisted ladder

The construction of the twisted ladder (Figure 11) can be built by using the following
procedures:

a. Construction of a rectangle.

to rect :a :b :c
repeat 2 [fd(:a) rt(:c) fd(:b) rt(180-:c)]
end

b. Construction of an equilateral triangle.

to tri :b
rt(30)
repeat 3 [fd(:b) rt(120)]
lt(30)
end

c. Construction of the step of a twisted ladder, where steps are equilateral triangles.

to step :a :b :c
rect(:a :b :c)
fd(:a)
dp(90)
tri(:b)
up(90)
lr(60)
end

d. Construction of the ladder.

to ladder :a :b :c :e
up(90)
repeat :e [step(:a :b :c)]
end

Figure 11. The construction of the twisted ladder.

2. The construction of swiveled rectangles.

By moving the sliders (Figure 12) the user can dynamically manipulate the size as well as
the turning movements of the construction.

to swivelrects :a :b :c :d :x :y :z
up(90)
rt(:x)
dp(:y)
rr(:z)
multirect(:a :b :c :d)
end

swivelrects(2 5 30 10 90 90 90)

Figure 12. The construction of the swiveled rectangles.

