

 Sus-X

 Technical Manual

Ver.: 2.1

Educational Technology Lab

National and Kapodistrian University of Athens

School of Philosophy

Faculty of Philosophy, Pedagogy and Philosophy

(P.P.P.), Department of Pedagogy

Director: Prof. C. Kynigos

Educational Technology Lab (ETL/NKUA) - Sus-X 2

Table of contents

The purpose of the manual Error! Bookmark not defined.
Designing a new game....................................... Error! Bookmark not defined.
Playing the game ... Error! Bookmark not defined.

Start a game .. Error! Bookmark not defined.
Select a point on the map .. 3

Ending the game ... Error! Bookmark not defined.
Brief description of the LOGO procedures Error! Bookmark not defined.
Notes ... 13

Educational Technology Lab (ETL/NKUA) - Sus-X 3

The purpose of the manual

The purpose of this manual is to provide appropriate information to

every teacher, researcher or even to an advanced user who wants to modify
the functionalities of the game generator Sus-X, by changing the existing
features or by adding new ones.

For this purpose, the procedures that take place while playing the
game is important to be understood, so as to make its deconstruction possible.

Designing a new game

During the "design phase” of the game, no Logo programming is
needed, only simple display "Views" commands which are located within the
“events” buttons.

“Views” is an inherent functionality of “E-Slate” authorial platform and
are referred to stored viewing modes of components on the screen. “Views”
allow us to store, display or hide components and also to save (with a name
of our choice) the exact appearance of the game (or the microworlds’
appearance in general).

Playing the game

After the "design phase”, when the new game is ready, all the
processes are taking place through a logo program which is scripted in the
"Logo" component.

Start a game

At the start of the game (when “Start” button is pressed):

• The chronometer starts to measure the time
• Initial values are loading to the game properties
• Counting the number of map points is initialized
• "Select" button is displayed in order to select a point on the map
• 'Start' button, changes appearance
• Previous game elements are removed from the game data base
• The actions of the player (logging) are recording

Select a point on the map

When a point is selected (on the map) from the player ("Select” button):

Educational Technology Lab (ETL/NKUA) - Sus-X 4

• Any previous message from the text box (that displays information) is
deleted
• The number of the selected points is increased
• A new record with all the elements - properties of the selected point is added
to the Data Base of the game
 •Logo checks if the maximum number of turns is completed
• Logo checks if any of the property values activates any of the termination
criteria set by the designer
•If there is no reason for ending the game the "check conditions" set by the
designer are checked and if any of them is valid, a posted message is
received.
• The game keeps a record of players’ actions (logrecord procedure).

Ending the game

If the game is ended by "internal" reasons, e.g because time or turns
limit is reached or an ending condition set by the designer is activated:

• The chronometer stops
• Information about the game state at the time of termination is displayed
• The reason of game ending is appeared
• "Stop" button changes appearance
• "Select" button hides

If the game is terminated by the player ("Stop" button) the same

actions as above are performed but in that case there is no message
describing the reason for ending the game.

Educational Technology Lab (ETL/NKUA) - Sus-X 5

Brief description of the LOGO procedures

Starting or Ending a game
• Logo checks if the user asks for starting or ending the game (from the same button)

• For starting the game, the initial values are recovered from the DB (Game_properties)

• Previous game data are deleted from the users’ DB (game_data)

to New_Game ; when start or stop game button is pressed

localmake "action ask "new [button.text]

if :action="|End Game| [

ask "chrono [stopchronometer]

ask "new [button.settext "|Start Game|]

ask "new [button.setfgcolor [0 150 0]]

ask "accept [hide]

ask "|Remaining| [hide]

ask "SpinEndGame [sbutton.setvalue -1]

stop

]

make "MaxTurns ask "Turns [sbutton.value]

make "TimeLimit ask "Available_time [sbutton.value]

make "EndReason "none

make "FieldNames ask "map_data [db.fieldnames]

make "FieldNames Butfirst :FieldNames

make "FieldNames Butfirst :FieldNames

make "FieldNames ExcludeFieldsFromList(:FieldNames)

make "FieldCount length :fieldnames

ask "chrono [resetchronometer]

ask "chrono [startchronometer]

ask "Available_time [hide]

Ask "Turns [hide]

ask "lbl_time [hide]

ask "lbl_turns [hide]

ask "TXT_end [area.settext "||]

ask "TXT_Check [area.settext "||]

ask "TXT_end [hide]

ask "TXT_check [hide]

Ask "Accept [restore]

ask "new [button.settext "|End Game|]

ask "new [button.setfgcolor [255 0 0]]

ask "|Remaining| [restore]

localmake "recordcount ask "game_data [(db.recordcount "game_table)]

repeat :recordcount [ask "game_data [(db.removerecord "game_table 1)]]

ask "Game_data [(db.addrecord "game_table)]

ask "Game_data [(db.setcell "game_table 1 "Description "|NEW GAME|)]

repeat :FieldCount [

 localmake "initValue ask "Game_properties [db.cell repcount "Initial_value]

 localmake "curFieldname ask "Game_properties [db.cell repcount "Field_name]

 ask "Game_data [(db.setcell "game_table 1 :curFieldname :initValue)]

]

make "curPoint 0

make "TurnsRemain :Maxturns

ask "logtext [area.settext "||]

logrecord true

ask "SpinEndGame [sbutton.setvalue 0]

endend

Educational Technology Lab (ETL/NKUA) - Sus-X 6

Choose - accept the selected point on the map

 The values of the points from the map DB are retrieved and inputted on the users’ DB

(game_data)

 Logo checks if the maximum number of turns is reached–If this happens, the game will come

to an end (GameEnded).

 Logo checks if the game should be ended due to selected conditions (CheckEndConditions)

 Logo checks the property values in order to display warning messages (CheckConditions)

to Accept_point ;get and save the chosen point

ask "TXT_check [area.settext "||]

make "curPoint :curPoint+1

make "messsageStr "||

ask "game_data [(db.addrecord "game_table)]

localmake "curMapRecord ask "map_data [db.activerecord]

ask "game_data [

localmake "fieldlist (db.fieldnames "game_table)

]

repeat length :fieldlist [

 localmake "curField item repcount :fieldlist

 localmake "curFieldValue ask "map_data [db.cell :curMapRecord :curField]

 localmake "curRec :curPoint+1

 ask "game_data [(db.setcell "game_table :curRec :curField :curFieldValue)]

]

updateRunningSum

If :curPoint = :MaxTurns [

 make "EndReason "byMaxTurns

 GameEnded

]

CheckEndConditions

if :EndReason="none [

 checkconditions

 GetAndShowValues "TXT_check

]

make "TurnsRemain :MaxTurns - :curPoint

logrecord false

end

Properties control to display warning messages

• Check conditions are retrieved from DB «Check_conditions»

• Properties are compared with check conditions and a cumulative message is appeared.

Educational Technology Lab (ETL/NKUA) - Sus-X 7

to CheckConditions ;check conditions after every point acceptance

localmake "numoflines ask "Check_conditions [db.recordcount]

print se "Total_check_conditions= :numoflines

repeat :numoflines [

 localmake "IsEnabled ask "Check_conditions [db.cell repcount "Con_Enabled]

 if :IsEnabled=true [

 localmake "con1 ask "Check_conditions [db.cell repcount "Condition1]

 localmake "con2 ask "Check_conditions [db.cell repcount "Condition2]

 localmake "con3 ask "Check_conditions [db.cell repcount "Condition3]

 localmake "con4 ask "Check_conditions [db.cell repcount "Condition4]

 localmake "totalcon 4

 Localmake "foundcon1 0

 Localmake "foundcon2 0

 Localmake "foundcon3 0

 Localmake "foundcon4 0

 localmake "info_cond se :con1 :con2

 localmake "info_cond se :info_cond :con3

 localmake "info_cond se :info_cond :con4

 print se "Check? :info_cond

 ask "Game_data [

 ifelse not emptyp :con1 [

 localmake "foundcon1 length (db.select "running_sum :con1)]

 [localmake "totalcon :totalcon - 1]

 ifelse not emptyp :con2 [

 localmake "foundcon2 length (db.select "running_sum :con2)]

 [localmake "totalcon :totalcon - 1]

 ifelse not emptyp :con3 [

 localmake "foundcon3 length (db.select "running_sum :con3)]

 [localmake "totalcon :totalcon - 1]

 ifelse not emptyp :con4 [

 localmake "foundcon4 length (db.select "running_sum :con4)]

 [localmake "totalcon :totalcon - 1]

]

 if :foundcon1 + :foundcon2 + :foundcon3 + :foundcon4 = :totalcon

 [

 localmake "curConmessage ask "Check_conditions [db.cell repcount "Con_Message]

 localmake "curConmessage word :curConmessage "|

|

 ask "TXT_check [area.append :curConmessage]]

]

]

ask "TXT_check [restore]

end

Checks if end conditions of the game are met

• End conditions are retrieved from DB «End_conditions»

• Properties are compared with end conditions

to CheckEndConditions ;check if the game is ended by end conditions

localmake "numofEndConditions ask "End_conditions [db.recordcount]

print se "Total_end_conditions= :numofEndConditions

repeat :numofendconditions [

 localmake "IsEnabled ask "End_conditions [db.cell repcount "End_Enabled]

 if :IsEnabled=true [

 localmake "con1 ask "End_conditions [db.cell repcount "End_Condition1]

 localmake "con2 ask "End_conditions [db.cell repcount "End_Condition2]

Educational Technology Lab (ETL/NKUA) - Sus-X 8

 localmake "con3 ask "End_conditions [db.cell repcount "End_Condition3]

 localmake "con4 ask "End_conditions [db.cell repcount "End_Condition4]

 localmake "totalcon 4

 localmake "foundcon1 0

 localmake "foundcon2 0

 localmake "foundcon3 0

 localmake "foundcon4 0

 localmake "info_end_cond se :con1 :con2

 localmake "info_end_cond se :info_end_cond :con3

 localmake "info_end_cond se :info_end_cond :con4

 print se "End? :info_end_cond

 ask "Game_data [

 ifelse not emptyp :con1 [

 localmake "foundcon1 length (db.select "running_sum :con1)]

 [localmake "totalcon :totalcon - 1]

 ifelse not emptyp :con2 [

 localmake "foundcon2 length (db.select "running_sum :con2)]

 [localmake "totalcon :totalcon - 1]

 ifelse not emptyp :con3 [

 localmake "foundcon3 length (db.select "running_sum :con3)]

 [localmake "totalcon :totalcon - 1]

 ifelse not emptyp :con4 [

 localmake "foundcon4 length (db.select "running_sum :con4)]

 [localmake "totalcon :totalcon - 1]

]

 if :foundcon1 + :foundcon2 + :foundcon3 + :foundcon4 = :totalcon

 [

 localmake "curEndMessage ask "End_conditions [db.cell repcount "End_Message]

 localmake "curEndMessage word :curEndMessage "|

|

 ask "TXT_End [area.append :curEndMessage]

 make "EndReason "byConditions

]]

]

if :EndReason="byConditions [GameEnded]

end

Calculating and displaying properties (their values)

• Calculation of property values in the users’ DB (game_data)

• Text composition and displaying providing all the information

to GetAndShowValues :TextAreaName ; Calculates and shows all field values

ask "game_data [

 localmake "fieldlist (db.fieldnames "running_sum)

 repeat length :fieldlist [

 localmake "curField item repcount :fieldlist

 localmake "curFieldValue (db.cell "running_sum 1 :curfield)

 localmake "lineText word :curField "=

 localmake "lineText word :lineText :curFieldValue

 ask :TextAreaName [area.append :lineText]

 ask :TextAreaName [area.append "|

|]

]

]

end

Educational Technology Lab (ETL/NKUA) - Sus-X 9

Checks the time out limit of the game

• Time calculation of the game

• Show the remaining game time

to CheckTimeLimit ; checks if time is up

localmake "curTime chronometerminutes

ifelse :curTime > :timelimit [

 make "EndReason "byTime

 GameEnded

][

make "timeRemain :timelimit - integer :curTime

localmake "lblRemaining word "| Remaining...| :timeRemain

localmake "lblRemaining word :lblRemaining "| minute(s) -- |

localmake "lblRemaining word :lblRemaining :TurnsRemain

localmake "lblRemaining word :lblRemaining "| turn(s)|

Ask "Remaining [label.settext :lblRemaining]

]

end

Ending game procedure
• The chronometer stops

• The ending reason is checked – A proper message is displaying

• The game properties are displayed by the procedure GetAndShowValues

to GameEnded ;shows proper message when game is ended

ask "chrono [stopchronometer]

ask "|Remaining| [hide]

if :EndReason="byTime [make "messageStr "| The Time Is Up!|]

if :EndReason="byConditions [make "messageStr "|The Game is ended!|]

if :EndReason="byMaxTurns [make "messageStr "| You have reached the maximum number of turns |]

make "messageStr word :messageStr "|

|

ask "TXT_end [area.append :messageSTR]

ask "TXT_end [restore]

ask "TXT_check [hide]

ifelse and :EndReason="byConditions :curPoint=:Maxturns [][

GetAndShowValues "TXT_end]

Ask "Accept [hide]

ask "new [button.settext "|Start Game|]

ask "new [button.setfgcolor [0 150 0]]

if :EndReason="byTime [

ask "SpinEndGame [sbutton.setvalue 1]

]

if :EndReason="byConditions [

ask "SpinEndGame [sbutton.setvalue 2]

]

if :EndReason="byMaxTurns [

ask "SpinEndGame [sbutton.setvalue 3]

]

end

Educational Technology Lab (ETL/NKUA) - Sus-X 10

Actions recording (recordings logging)

• This procedure is called at the start of the game, by selecting a point on the map and at the end of the

game

• Records the time and property values

to LogRecord :newgame

ifelse :newgame = true [

 localmake "curDescr "|NEW GAME|

][

 localmake "curdbaserecord ask "map_data [db.activerecord]

 localmake "curDescr ask "map_data [db.cell :curdbaserecord "Περιγραφή]

]

make "curTime (chronometertime)

localmake "timeword item 1 :curtime

localmake "timeword word :timeword ":

localmake "timeword word :timeword item 2 :curtime

localmake "timeword word :timeword ":

localmake "timeword word :timeword item 3 :curtime

localmake "linetext word :curPoint + 1 "|# |

localmake "linetext word :lineText :timeword

localmake "linetext word :lineText "| [|

localmake "linetext word :lineText :curDescr

localmake "linetext word :lineText "|]|

localmake "fieldlist ask "map_data [db.fieldnames]

ask "game_data [

localmake "fieldlist (db.fieldnames "running_sum)

]

repeat length :fieldlist [

 localmake "curfield item repcount :fieldlist

 localmake "linetext word :lineText "| |

 localmake "lineText word :lineText :curField

 localmake "linetext word :lineText "=

 ifelse :newgame=true [

 localmake "curFieldVal ask "game_data [(db.cell "game_table 1 :curField)]

][

 localmake "curFieldVal ask "game_data [(db.dsum "game_table :curField)]

]

 localmake "lineText word :lineText :curFieldVal

]

ask "logtext [area.append :linetext]

ask "logtext [area.append "|

|]

end

Supporting procedures

• CreateInitials: Automatically keeps records on the table «Game_properties» who keeps the initial

property values of points. This procedure sets initial value = 0 in all records and called by the "Set

initial values." button

• dropTable: Removes all the database fields in a table.

• addTableFields: Adds a table in a list of fields.

• createGameDataTable: Creates the fields in the game data table («game_table») and also the fields in

the table that keeps the score («running_sum»). This procedure is called by the "Create" button in the

transition from the“design phase” to the “game phase”.

• updateRunningSum: Updates the “running_sum” table with the fields totals of «game_table» so it

creates the score. It is called every time a new point is selected by the user in the game.

Educational Technology Lab (ETL/NKUA) - Sus-X 11

• ExcludeFieldsFromList: Receives a list of fields and returns the same list without fields starting by

default characters. It is used to exclude from calculations DB fields of the map which are considered to

be supporting and are containing text data format.

to CreateInitials ; create records in game_properties

localmake "mapfieldlist butfirst ask "map_data [db.fieldnames]

localmake "mapfieldlist butfirst :mapfieldlist

localmake "mapfieldlist ExcludeFieldsFromList(:mapfieldlist)

print :mapfieldlist

localmake "mapfieldcount length :mapfieldlist

print :mapfieldcount

repeat length :mapfieldlist [

 localmake "curField item repcount :mapfieldlist

 localmake "query word "Field_name= :curField

 localmake "FieldFound ask "Game_properties [db.select :query]

 if emptyp :FieldFound [

 ask "Game_properties [db.addrecord]

 localmake "lastrecord ask "Game_properties [db.recordcount]

 ask "Game_properties [db.setcell :lastrecord "Field_name :curField]

 ask "Game_properties [db.setcell :lastrecord "Initial_value "0]

]

]

end

to dropTable :dbname :tablename

ask :dbname [

localmake "fieldlist (db.fieldnames :tablename)

repeat length :fieldlist [

(db.removefield :tablename item repcount :fieldlist)

]

]

end

to addTableFields :dbname :tablename :fieldlist

ask :dbname [

repeat length :fieldlist [

(db.addfield :tablename item repcount :fieldlist "float)

]

]

end

to createGameDataTable

dropTable "Game_data "game_table

dropTable "Game_data "running_sum

localmake "fieldlist ask "map_data [db.fieldnames]

localmake "fieldlist butfirst :fieldlist

localmake "fieldlist butfirst :fieldlist

localmake "fieldlist ExcludeFieldsFromList(:fieldlist)

ask "Game_data [(db.addfield "game_table " Description "string)]

addTableFields "Game_data "game_table :fieldlist

addTableFields "Game_data "running_sum :fieldlist

end

to updateRunningSum

ask "Game_data [

localmake "recordexist (db.recordcount "running_sum)

Educational Technology Lab (ETL/NKUA) - Sus-X 12

print :recordexist

if :recordexist = 0 [(db.addrecord "running_sum)]

localmake "fieldlist (db.fieldnames "running_sum)

repeat length :fieldlist [

 localmake "curfield item repcount :fieldlist

 localmake "cursum (db.dsum "game_table :curfield)

 print :curfield

 (db.setcell "running_sum 1 :curfield :cursum)

]

]

end

to ExcludeFieldsFromList :fieldnamelist ;finds and excludes fields with specific name pattern

localmake "fieldnamelist2 []

repeat length :fieldnamelist [

 localmake "curfieldname item repcount :fieldnamelist

 localmake "char1 item 1 :curfieldname

 localmake "char2 item 2 :curfieldname

 if not (and :char1="# :char2="_) [

 localmake "fieldnamelist2 lput :curfieldname :fieldnamelist2

]

]

output :fieldnamelist2

end

Educational Technology Lab (ETL/NKUA) - Sus-X 13

Notes

• The «SpinEndGame» component is updated by the ending reason of the
game and exists for future use.

• For the transition from the "design form" to the "game form" is necessary to
click the"Create" button to clean the previous game data. Nonetheless, the
direct access to the "game" is possible through the corresponding "view"
menu [Microworld]> [Views: view_game_with_logging]

• After every change to the LOGO code or when inserting new procedures the
definition of them is required: Therefore, marking the whole procedure and

pressing either the [INSERT] button or the "Run" button on the toolbar of
the LOGO component is needed.

• The “print” command is used on the code, at various points, for testing the
function, and displays its results in the middle part of the LOGO component
window.

